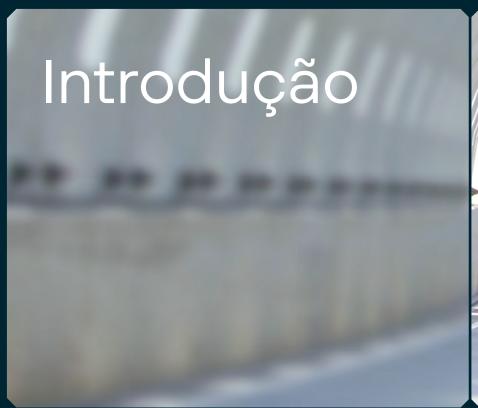
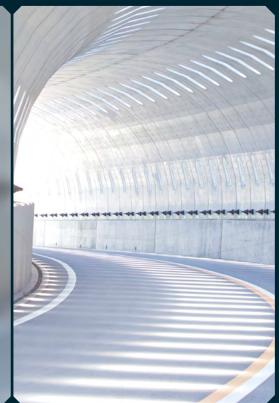


Innovation Telescope Zoom Portugal

2025


Índice


INTRODUÇÃO	6
I. Principais tendências identificadas	7
II. Grau de adoção e maturidade	8
Grau de adoção	8
» Grau de adoção por tecnologia e setor	9
» Comparação da adoção por setor (tecnologia	s globais)10
» Comparação da adoção por tecnologia (mero	ados globais)11
1. AI VALUE SOLUTIONS	
1.1. Machine customer	
Introdução	
1.1.1. Impacto nos negócios	12
1.1.2. Abordagem técnica	
·	13
•	13
1.1.3. Casos de uso por mercado	
1.1.4. Considerações de mercado	14
1.1.5. Empresas de referência e startups	
1.1.6. Estatísticas recentes	14
1.1.7. Referências	14
2. APP MODERNIZATION	
2.1. Polyfunctional Robots	
Introdução	
2.1.1. Impacto nos negócios	
2.1.2. Abordagem técnica	
•	16
2.1.2.2. Capacidades-Chave	16
2.1.3. Casos de uso por mercado	
2.1.4. Considerações de mercado	16
2.1.5. Empresas de referência e startups	
2.1.6. Estatísticas recentes	17
2.1.7. Referências	
3.DATA MODERNIZATION	
3.1. Quantum technologies	18
Introdução	18
3.1.1. Impacto nos negócios	18
3.1.2. Abordagem técnica	
3.1.2.1. Computação quântica	19
3.1.2.2. Comunicação quântica	19
3.1.2.3. Deteção quântica	19

	3.1.3 . Casos de uso por mercado	19
	3.1.4. Considerações de mercado	19
	3.1.5. Empresas de referência e startups	20
	3.1.6. Estatísticas recentes	20
	3.1.7. Referências	20
3.2. S	Spacial computing	21
Introc	dução	21
	3.2.1. Impacto nos negócios	21
	3.2.2. Abordagem técnica	22
	3.2.2.1. Tecnologias-chave	22
	3.2.2.2. Infraestruturas	22
	3.2.3. Casos de uso por mercado	22
	3.2.4. Considerações de mercado	22
	3.2.5. Empresas de referência e startups	23
	3.2.6. Estatísticas recentes	
	3.2.7. Referências	23
4. CU	JSTOMER FIRST	24
4.1. N	leurological enhancements	24
Introd	dução	24
	4.1.1. Impacto nos negócios	24
	4.1.2. Abordagem técnica	25
	4.1.3. Casos de uso por mercado	
	4.1.4. Considerações de mercado	25
	4.1.5. Empresas de referência e startups	26
	4.1.6. Estatísticas recentes	26
	4.1.7. Referências	26
5. DIG	GITAL IDENTITY ONBOARDING/SIGNATURE	27
5.1. Di	Pigital trust and cybersecurity	27
Introc	dução	27
	5.1.1. Impacto nos negócios	27
	5.1.2. Abordagem técnica	28
	5.1.3 . Casos de uso por mercado	28
	5.1.4. Considerações de mercado	28
	5.1.5. Empresas de referência e startups	29
	5.1.6. Estatísticas recentes	29
	5.1.7. Referências	29

5.2. Desinformation security	30
Introdução	30
5.2.1. Impacto nos negócios	30
5.2.2. Abordagem técnica	31
5.2.3. Casos de uso por mercado	31
5.2.4. Considerações de mercado	31
5.2.5. Empresas de referência e startups	32
5.2.6. Estatísticas recentes	32
5.2.7. Referências	32
5.3. Post-quantum cryptography	33
Introdução	33
5.3.1. Impacto nos negócios	33
5.3.2. Abordagem técnica	34
5.3.3. Casos de uso por mercado	34
5.3.4. Considerações de mercado	34
5.3.5. Empresas de referência e startups	35
5.3.6. Estatísticas recentes	35
5.3.7. Referências	35
6. ESG 360	36
6.1. Sustainable IT technology	36
Introdução	36
6.1.1. Impacto nos negócios	36
6.1.2. Abordagem técnica	37
6.1.3. Casos de uso por mercado	37
6.1.4. Considerações de mercado	37
6.1.5. Empresas de referência e startups	38
6.1.6. Estatísticas recentes	38
6.1.7. Referências	38
7. ITO TRANSFORMATION	39
7.1. Private cloud	39
Introdução	39
7.1.1. Impacto nos negócios	39
7.1.2. Abordagem técnica	40
7.1.3. Casos de uso por mercado	40
7.1.4. Considerações de mercado	
7.1.5. Empresas de referência e startups	41
7.1.6. Estatísticas recentes	
7.1.7. Referências	41

7.2. Hybrid computing	42
Introdução	42
7.2.1. Impacto nos negócios	42
7.2.2. Abordagem técnica	43
7.2.3. Casos de uso por mercado	43
7.2.4. Considerações de mercado	43
7.2.5. Empresas de referência e startups	44
7.2.6. Estatísticas recentes	44
7.2.7. Referências	44
8. DIGITAL WORKPLACE	
8.1. Augmented connected workforce	45
Introdução	45
8.1.1. Impacto nos negócios	45
8.1.2. Abordagem técnica	46
8.1.3. Casos de uso por mercado	46
8.1.4. Considerações de mercado	46
8.1.5. Empresas de referência e startups	47
8.1.6. Estatísticas recentes	47
8.1.7. Referências	47

Num cenário tecnológico em constante transformação, é essencial que as organizações em Portugal acompanhem as tendências emergentes em Tecnologias da Informação (TI) para garantir a sua competitividade, resiliência e eficiência operacional. A aceleração digital, impulsionada por tecnologias como a inteligência artificial, a computação híbrida, a cibersegurança avançada e a sustentabilidade digital, está a redefinir os modelos de negócio e os serviços públicos em todo o país.

Este documento apresenta uma análise aprofundada das principais tendências tecnológicas que estão a moldar o futuro do setor das TI em Portugal a partir de 2024. O objetivo é identificar áreas prioritárias de inovação e desenvolvimento que possam apoiar

a transformação digital das empresas e da Administração Pública, em alinhamento com os objetivos do Plano de Recuperação e Resiliência (PRR) e da Estratégia Portugal Digital.

A análise foi realizada com base numa combinação de investigação primária e secundária. Foram consultados relatórios de referência de consultoras internacionais, bem como estudos e indicadores nacionais do Observatório de Inovação do INCoDe.2030, do Centro Nacional de Cibersegurança (CNCS) e da Agência para a Modernização Administrativa (AMA). Este trabalho foi complementado com a análise interna das nossas unidades de negócio, que já identificaram oportunidades concretas de inovação a curto e médio prazo, integradas nas atividades de evolução da oferta prioritária.

I. Principais tendências identificadas

- Computação quântica em expansão inicial: Apesar de ainda se encontrar numa fase exploratória, a
 computação quântica está a ganhar tração em setores como a banca, a saúde e a logística. Em Portugal,
 estão a ser desenvolvidas parcerias entre universidades, centros de investigação e entidades públicas para
 explorar aplicações práticas em criptografia pós-quântica, simulação de materiais e otimização de processos
 complexos. Esta tecnologia será determinante para resolver problemas que ultrapassam as capacidades da
 computação clássica nos próximos anos.
- Evolução da Inteligência Artificial (IA): A IA continua a evoluir rapidamente em Portugal, com destaque para a IA generativa, modelos energeticamente eficientes e soluções hiperpersonalizadas. A combinação da IA com a análise de dados está a transformar setores como a saúde, a educação, a indústria transformadora e os serviços financeiros. A IA está a tornar-se uma infraestrutura invisível, essencial para a inovação e a competitividade empresarial.
- Cibersegurança inteligente e confiança digital: A crescente digitalização da economia portuguesa tem elevado a cibersegurança a uma prioridade estratégica. As organizações estão a adotar arquiteturas de confiança zero, inteligência artificial para deteção proativa de ameaças e estratégias de ciber-resiliência nas suas cadeias de valor. Apesar dos desafios em termos de talento e infraestrutura, Portugal tem vindo a reforçar a sua soberania digital, em linha com a Estratégia Nacional de Cibersegurança 2024-2030.
- Conectividade avançada e 5G: A expansão das redes 5G e a digitalização das infraestruturas estão a permitir o desenvolvimento de cidades inteligentes, automação industrial e serviços públicos mais eficientes. Esta conectividade também potencia a interação entre dispositivos autónomos, facilitando o crescimento dos clientes-máquina e dos sistemas de decisão autónomos.

II. Grau de adoção e maturidade

Com base nas informações disponíveis em fontes públicas e nos resultados analisados no relatório, foi realizada uma análise inicial do grau de maturidade e da adoção destas tendências geográficas.

É oferecida uma comparação do grau de maturidade com outras geografias analisadas (Espanha, Portugal, Itália, México, Colômbia & América Central + Caribe, Peru ou Cone Sul, Brasil) e uma comparação com líderes em inovação (EUA, China, EUA).

Grau de adoção

O grau de adoção de tecnologia é uma medida que indica quão ampla e profundamente tecnologias específicas estão sendo implementadas e usadas em um país, setor ou indústria. Este grau é geralmente expresso numa escala de 1 a 5, em que:

- 1 = Adoção muito baixa ou incipiente
- 2 = Adoção limitada ou piloto
- 3 = Adoção moderada ou em expansão
- 4 = Adoção avançada ou consolidada
- 5 = Adoção Completa ou Altamente Integrada

Que fatores influenciam o grau de adoção?

Infraestrutura tecnológica: Disponibilidade de redes, data centers, conectividade, etc.

Capacidades humanas: Formação, talento digital, cultura de inovação.

Investimento público e privado: fundos atribuídos à I+D, transformação digital, etc.

Regulação e políticas: Quadros jurídicos que favorecem ou limitam a adoção.

Procura do mercado: Necessidades dos consumidores ou utilizadores finais.

Maturidade do ecossistema: Presença de startups, universidades, centros de inovação.

» Grau de adoção por tecnologia e setor

Aqui está o **mapa de calor** que mostra o **nível de implementação tecnológica por setor em Portugal**, com base em dados estimados para o período **2024-2025**:

Nível de Implementação Tecnológica por Setor em Portugal (2024-2025)

5 5 Indústria 4 4 5 5 2 4 5 4 4 Educação 2 4 2 5 Saúde 5 2 2 2 2 5 2 Finanças 4 4 2 2 5 5 4 2 5 5 4 4 Bem-estar 4 4 4 2 5 4 2 2 Governo ESG ⊴ 56 Cibersegurança Robótica **Nuvem Hibrida Workplace Aumentado** Identidade Digital **TECNOLOGIAS** 2,0 2,5 3,0 3,5 4,0 4,5 5,0

Nível de Implementação (1-5)

Como interpretar:

SETORES

- Eixo vertical: Setores (Indústria, Educação, Saúde, etc.).
- **Eixo horizontal:** Tecnologias (IA, 5G, Quântica, etc.).
- Cores: Representam o nível de implementação (de 1 a 5), onde tons mais escuros indicam maior adoção.

» Comparação da adoção por setor (tecnologias globais)

Um mapa de calor **é anexado** com:

- Eixo horizontal: Setores (indústria, educação, saúde, finanças, saúde, governo).
- Eixo vertical: Países e regiões.
- Cores: Representam o nível médio de adoção de tecnologia (2024-2025) numa escala de 1 a 5.

Grau de adoção tecnológica por país e setor (2024–2025)

Colômbia	3,2	3,5	3	3,4	3,1	3,3
Espanha	4	4,2	4,1	4,3	4	4,1
México	3,8	3,9	3,7	3,9	3,6	3,8
Portugal	3,5	3,7	3,6	3,8	3,5	3,6
Brasil	3,6	3,8	3,5	3,7	3,4	3,6
Itália	4,1	4,3	4	4,2	4	4,1
Peru e Cone Sul	3,4	3,6	3,3	3,5	3,2	3,4
China	4,8	4,9	4,7	4,8	4,6	4,7
EUA	5	5	4,9	5	4,8	4,9
UE	4,5	4,6	4,4	4,6	4,3	4,5
	Indústria	Educação	Saúde	Finanzas	Finanças	Governo

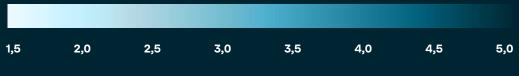
SETORES

Nível de adoção (1-5)

» Comparação da adoção por tecnologia (mercados globais)

Um mapa de calor **é anexado** com:

• Eixo horizontal: Tecnologias


MERCADO

- Eixo vertical: Países e regiões.
- Cores: Representam o nível médio de adoção de tecnologia (2024-2025) numa escala de 1 a 5.

Grau médio de adoção tecnológica (2024-2025) por mercado e tecnologia

3,2 2,2 Colômbia 1,5 4 Espanha 4,1 4 2,5 4,2 3,5 4,1 3,9 4 México 4 3,7 2,3 3,9 3,3 3,8 3,6 3,5 3,7 **Portugal** 3,5 3,2 2 3,6 3,4 3,7 3,3 3,5 Brasil 3,6 3,4 2,1 3,7 3,5 3,3 3,2 3,6 Itália 4 4,1 3,9 3,8 2,4 3,4 3,8 3,9 Peru e Cone Sul 3,3 1,6 2,3 2,8 China 5 5 4,5 4,2 4,5 4,7 4,8 4,6 4,6 5 **EUA** 4,8 5 5 5 4,5 4,6 4,7 4,9 UE 4,3 4,2 3,8 4,4 3,9 4,1 4,3 4 4,2 ₹ Workplace Aumentado 56 Cibersegurança **Nuvem Hibrida** ESG Identidade Digital

Nível de adoção (1-5)

Al Value Solutions

1.1. | Machine customer

Máquinas de Clientes: Surgimento de Sistemas Autônomos e Algoritmos como Atores Econômicos em Transações B2B.

A ascensão dos clientes máquina sistemas autónomos, algoritmos e dispositivos inteligentes que tomam decisões e realizam transações económicas — representa uma das maiores oportunidades de crescimento da década. Segundo a Gartner, até 2030, 25% das compras empresariais e de consumo serão realizadas por máquinas 1. Em Portugal, setores como energia, telecomunicações, saúde e finanças já exploram o potencial de clientes autónomos, desde reabastecimento automático até decisões de investimento baseadas em IA.

1.1.1. Impacto nos negócios

Setor	Impacto esperado
Administração pública	Automatização de compras públicas, gestão de contratos digitais, licitações inteligentes.
Energia & Utilities	Otimização de compras de peças e serviços, manutenção preditiva com compras automatizadas.
Financeiro & Seguros	Roboadvisors que tomam de- cisões de investimento e seguros automaticamente
Indústria e Retalho	Reposição automática de esto- que, negociação de preços de IA, compras baseadas em previsão de demanda.
Telecomu- nicações e Media	Contratação automática de ser- viços de rede, gestão de fornece- dores por algoritmos.
Saúde	Compra autónoma de medica- mentos e equipamentos, gestão de stocks hospitalares, contra- tação de serviços clínicos.

1.1.2. Abordagem técnica

A implantação de máquinas clientes requer uma combinação de tecnologias avançadas e uma infraestrutura robusta:

- Agentes Autónomos: Sistemas de IA com capacidades de tomada de decisão baseadas em dados históricos e contexto operacional.
- Smart Contracts: Executados em blockchain, permitem acordos automáticos entre máquinas.
- Plataformas de Comércio Autônomo: Integradas com ERP, CRM e marketplaces digitais.
- Identidade Digital de Máquinas: Autenticação e autorização de sistemas autónomos.
- Integração API-first: para conectar agentes com fornecedores, bancos e sistemas logísticos.

1.1.2.1. Arquitetura de Clientes Máquina

- Sensores e IoT: Captura de dados em tempo real
- IA e Machine Learning: Tomada de decisão autónoma
- APIs e Plataformas Digitais: Integração com marketplaces e ERPs
- Blockchain: Registo imutável de transações máquina-a-máquina
- Identidade Digital para Máquinas: Autenticação e autorização seguras

1.1.2.2. Fases de Evolução

- Clientes Vinculados: Executam ações pré-programadas (ex: Amazon Dash).
- Clientes Adaptáveis: Tomam decisões com base em IA (ex: roboadvisors).
- Clientes Autónomos: Agem com total independência dentro de limites definidos.

1.1.3. Casos de uso por mercado

Setor	Empresa	Aplicação de Clientes de Máquinas
Administração pública	AMA (Agência para a Modernização Administrativa)	Sistema automatizado de contratos públicos para contratos de baixo valor
Energia	EDP	Agente de IA para aquisição de peças e serviços de manutenção
Financeiro	Millennium BCP	Roboadvisors para gestão de carteiras empresariais
Indústria e Retalho	Sonae	Reabastecimento automático de produtos com base em algoritmos de previsão de demanda
Telecomunicações	EUA	Gestão automatizada de contratos com fornecedores de infraestruturas
Saúde	CUF	Sistema autónomo de compra de medicamentos e equipamento médico

1.1.4. Considerações de mercado

Público: Requer regulamentação clara e interoperabilidade entre sistemas

Energia: Alta fiabilidade e segurança operacional

Financeiro: Conformidade com o Banco de Portugal e a CMVM Indústria: Integração com cadeias de fornecimento e ERPs

Telecom: Gestão de tráfego e latência

Saúde: Certificação médica e proteção de dados sensíveis

1.1.5. Empresas de referência e startups

Globais

SIEMENS

Portuguesas:

Unbabel (IA), Defined.ai (dados para IA), Feedzai (fraude financeira), Veniam (IoT móvel).

1.1.6. Estatísticas recentes

Até 2030, 25% das transações B2B serão realizadas por máquinas 1

Existem mais dispositivos com capacidade de compra do que humanos no planeta 1

O mercado de clientes máquina poderá ultrapassar trilhões de dólares em valor até o final da década ²

1.1.7. Referências

Gartner, "Principais tendências em ecossistemas de IA e B2B", 2024.

McKinsey & Company, "O Futuro dos Sistemas Autónomos nos Negócios", 2023.

Forrester, "Alavancando clientes de máquinas para obter vantagem competitiva", 2024.

Pesquisa IBM, "Blockchain e IA para Comércio Autônomo", 2023.

App Modernization

2.1. | Polyfunctional robots

Robôs Multifuncionais: Robôs Capazes de Multitarefa.

Os robôs polifuncionais representam uma nova geração de sistemas automatizados capazes de realizar diversas tarefas, adaptando-se a diferentes contextos operacionais sem necessidade de reprogramação. Segundo a Gartner, estes robôs estão entre as principais tendências tecnológicas para 2025, com potencial para transformar a produtividade humana e a eficiência empresarial ⁴. Em Portugal, setores como saúde, indústria, energia e administração pública já exploram aplicações práticas desta tecnologia.

2.1.1. Impacto nos negócios

Setor	Impacto esperado
Administração pública	Robôs para atendimento ao cidadão, limpeza urbana, vigilância e logística documental.
Energia & Utilities	Inspeção de infraestruturas, manutenção preditiva, monito- rização ambiental com robôs móveis.
Financeiro & Seguros	Atendimento ao cliente, análise de documentos e deteção de fraudes
Indústria e Retalho	Robôs colaborativos para montagem, embalagem, controle de qualidade e logística interna.
Telecomu- nicações e Media	Instalação e manutenção de equipamentos, suporte técnico automatizado, inspeção de rede.
Saúde	Robôs cirúrgicos, entrega de medicamentos, desinfeção, apoio logístico hospitalar.

2.1.2. Abordagem técnica

2.1.2.1. Componentes tecnológicos

- Sensores multiespectrais e câmaras 3D para navegação e reconhecimento de objetos.
- Inteligência Artificial incorporada para a tomada de decisões em tempo real.
- Plataformas móveis autónomas (AMR) com braços robóticos modulares.
- Integração com sistemas ERP, SCADA e plataformas de gestão hospitalar.
- Conectividade via 5G e edge computing para baixa latência e resposta imediata.

2.1.2.2. Capacidades-Chave

- Execução de múltiplas funções: Um único robô pode realizar tarefas de limpeza, transporte, inspeção e interação humana
- Colaboração Homem-Máquina: Operação segura em ambientes partilhados
- Mobilidade e Autonomia: Navegação em espaços complexos com tomada de decisão local

2.1.3. Casos de uso por mercado

Setor	Empresa	Aplicação de Robôs Multifuncionais	
Administração pública	Concelho de Cascais	Robôs de limpeza urbana e entrega de documentos em edifícios públicos	
Energia	E-Redes (Grupo EDP) Robôs móveis para inspeção de sub e linhas de transmissão		
Financeiro	Banco Santander Portugal	Robôs de análise documental e atendimento em agências	
Indústria e Retalho	Sonae MC	Robôs colaborativos para embalagem e controlo de qualidade em centros logísticos	
Telecomunicações	Altice Portugal	Robôs para manutenção de rack e inspeção de rede em data centers	
Saúde Hospital da Luz		Robôs de apoio cirúrgico e logística hospitalar (entrega de medicamentos e amostras)	

2.1.4. Considerações de mercado

Administração Pública: Requer regulamentação sobre interação com cidadãos e proteção de dados

Energia: Necessidade de certificação para ambientes críticos e integração com sistemas SCADA

Financeiro: Conformidade com regulamentos do Banco de Portugal e proteção de dados sensíveis

Indústria: Compatibilidade com linhas de produção e sistemas de gestão

Telecomunicações: Robustez em ambientes externos e conectividade contínua

Saúde: Certificação médica, segurança clínica e interoperabilidade com sistemas hospitalares

2.1.5. Empresas de referência e startups

Globais

Portuguesas:

- Tekever: robótica aérea.
- INESC TEC: investigação em robótica colaborativa.
- CEiiA (Centro de Engenharia e Desenvolvimento): Desenvolvimento de robôs para cidades inteligentes.
- Zippedi (com presença em Portugal): robôs de IA para reposição de inventário e retalho.

2.1.6. Estatísticas recentes

Existem mais de 4 milhões de robôs industriais de função única em operação globalmente 4

Robôs polifuncionais oferecem maior retorno sobre investimento (ROI) ao substituir múltiplos sistemas especializados 4

Em Portugal, espera-se que 30% das grandes empresas industriais adotem robôs polifuncionais até 2027 ⁵

2.1.7. Referências

Gartner. (2023). "Análise de Tecnologias Emergentes: Robótica Polifuncional".

Deloitte. (2023). "Tendências em Automação Industrial".

Fortune Business Insights. (2023). "Previsão do Mercado de Robótica".

Statista. (2023). "Insights da Indústria de Robótica".

Data Modernization

3.1. | Quantum technologies

Tecnologias quânticas: crescente conscientização de seu potencial em IA, simulação de cenários de negócios e descobertas científicas, mesmo com a implantação completa a anos de distância.

As tecnologias quânticas estão a emergir como um dos pilares da próxima revolução tecnológica. Embora a sua implementação em larga escala ainda esteja distante, o seu potencial disruptivo — especialmente em criptografia, simulação molecular, otimização e comunicações seguras — está a gerar crescente interesse em Portugal e no mundo. A computação quântica, a comunicação quântica e a deteção quântica são os três pilares principais desta transformação é.

3.1.1. Impacto nos negócios

Setor	Impacto esperado
Administração pública	Criptografia quântica para co- municações seguras, simulações complexas de políticas públicas.
Energia & Utilities	Simulação de novos materiais para baterias, otimização de redes energéticas.
Financeiro & Seguros	Modelagem de risco, deteção de fraudes e criptografia resistente a ataques quânticos
Indústria e Retalho	Otimização logística, simulação de cadeias produtivas, previsão de demanda com algoritmos quânticos.
Telecomuni- cações e Media	Distribuição quântica de chaves (QKD), segurança de rede, deteção de interferências.
Saúde	Simulação molecular para desenvolvimento de fármacos, algoritmos quânticos para diagnóstico e genómica.

3.1.2. Abordagem técnica

3.1.2.1. Computação quântica

- Utiliza qubits que operam em estados superpostos e entrelaçados
- Algoritmos como Shor (fatoração) e Grover (busca) oferecem vantagens exponenciais

3.1.2.2. Comunicação quântica

- Baseada em entrelaçamento quântico e distribuição de chave quântica (QKD)
- Impossível de ser intercetada sem deteção

3.1.2.2. Deteção quântica

- Sensores quânticos para medições ultra-precisas de campos magnéticos, gravidade
- Plataformas híbridas (clássica + quântica) para simulações industriais

3.1.3. Casos de uso por mercado

Empresa/Instituição	Aplicação de Tecnologias Quânticas
INA / Gabinete de Segurança Nacional	Formação e Aplicação QKD em Comunicações Governamentais
EDP Inovação	Simulação de Materiais para Baterias e Redes Inteligentes
Banco de Portugal	Avaliação de risco quântico e preparação para criptografia pós-quântica
Sonae IM	Otimizando cadeias de suprimentos com algoritmos quânticos simulados
Altice Labs / Instituto de Telecomunicações	Projeto DISCRETION com QKD para redes militares e civis seguras
Instituto Gulbenkian de Ciência	Simulação molecular para o desenvolvimento de terapias personalizadas
	INA / Gabinete de Segurança Nacional EDP Inovação Banco de Portugal Sonae IM Altice Labs / Instituto de Telecomunicações

3.1.4. Considerações de mercado

Administração Pública: Requer políticas nacionais de cibersegurança quântica

Energia: Integração com HPC e plataformas de simulação

Financeiro: Conformidade com reguladores e preparação para ataques quânticos

Indústria: Acesso a plataformas quânticas via cloud e capacitação técnica

Telecomunicações: Infraestrutura para QKD e redes quânticas

Saúde: Validação científica e regulamentação ética

3.1.5. Empresas de referência e startups

Globais

Portuguesas:

QPT (Quantum Portugal Technologies), **INL** (Laboratório Ibérico Internacional de Nanotecnologia), **Instituto de Telecomunicações** (projetos de QKD)

Startups:

- a. QCentroid (Europa): Plataforma de simulação quântica para otimização logística.
- b. Deimos Engenharia: Coordenador do projeto DISCRETION com QKD para defesa nacional.
- c. Adyta (Portugal): Especialista em segurança quântica aplicada a redes de comunicação.

3.1.6. Estatísticas recentes

O mercado global de tecnologias quânticas poderá atingir 97 mil milhões de dólares até 2035 é

A computação quântica representará **72 mil milhões** desse total, com destaque para os setores de **finanças,** ciências da vida, mobilidade e energia ⁶

Portugal participa em **projetos europeus de comunicação quântica** como o **EuroQCI** (European Quantum Communication Infrastructure)

3.1.7. Referências

Gartner, "Quantum Computing Trends", 2024.

McKinsey & Company, "Desbloqueando o Potencial das Tecnologias Quânticas", 2023.

Forrester, "Disrupção quântica nos negócios", 2024.

IBM Research, "O Futuro da Computação Quântica", 2023.

3.2. | Spacial computing

Computação Espacial: A Fusão dos Mundos Físico e Digital através da Realidade Aumentada e Virtual.

A **computação espacial** representa uma convergência de tecnologias imersivas — como realidade aumentada (AR), realidade mista (MR), sensores espaciais, IA e interfaces naturais — que permitem aos utilizadores interagir com conteúdos digitais ancorados no mundo físico. Esta tecnologia está a transformar a forma como as empresas compreendem e interagem com os seus colaboradores e clientes, potenciando funções cognitivas e decisões baseadas em contexto ^{7 8}.

3.2.1. Impacto nos negócios

Setor	Impacto esperado
Administração pública	Visualização de dados urbanos em 3D, simulações de políticas públicas, aumento da participação cidadã.
Energia & Utilities	Monitorização remota de infraes- truturas, simulações de redes de energia, formação técnica imersiva.
Financeiro & Seguros	Simulações imersivas para edu- cação financeira e análise compor- tamental
Indústria e Retalho	Análise do comportamento do consumidor, design de produtos RA, experiências de compra imersivas.
Telecomu- nicações e Media	Visualização de rede, suporte técni- co remoto, experiências interativas do cliente.
Saúde	Diagnóstico espacial assistido por IA, treinamento cirúrgico em RV, reabilitação cognitiva com ambientes virtuais.

3.2.2. Abordagem técnica

3.2.2.1. Tecnologias-chave

- Sensores espaciais (LiDAR, câmaras 3D) para mapeamento do ambiente.
- Plataformas AR/VR como Unity, Unreal Engine, WebXR.
- IA cognitiva para interpretar emoções e padrões de comportamento.
- Gêmeos digitais para simular ambientes físicos.
- Edge computing e 5G para baixa latência e processamento em tempo real.

3.2.2.2. Infraestruturas

- Integração com sistemas GIS, ERP e plataformas de dados urbanos.
- Dispositivos como HoloLens, Magic Leap, Meta Quest.
- Plataformas de gestão de experiência imersiva (XR-as-a-Service).

3.2.3. Casos de uso por mercado

Setor	Empresa/Instituição	Aplicação da Computação Espacial
Administração pública	Câmara Municipal de Lisboa	Simulação urbana 3D para planeamento participativo e gestão da mobilidade
Energia	EDP Inovação	Formação técnica em ambientes virtuais e simulação de redes elétricas
Financeiro	Millennium BCP	Simulações imersivas para educação financeira de clientes jovens
Indústria e Retalho	Sonae MC	Análise de fluxo de clientes e projeto de layout com RA
Telecomunicações	Laboratórios Altice	Visualização de rede de fibra ótica e suporte técnico com RA
Saúde	Hospital da Luz	Treinamento cirúrgico em RV e diagnóstico assistido com IA espacial

3.2.4. Considerações de mercado

Administração Pública: Requer acessibilidade, inclusão digital e interoperabilidade

Energia: Necessidade de robustez em ambientes industriais e integração com sistemas SCADA

Financeiro: Privacidade de dados e conformidade com reguladores

Indústria: Compatibilidade com sistemas de chão de fábrica e formação técnica

Telecomunicações: Latência mínima e suporte a edge computing

Saúde: Certificação médica e validação científica de aplicações clínicas

3.2.5. Empresas de referência e startups

Globais

Portuguesas:

Didimo (avatares digitais), Sensei (retalho inteligente), YData (IA contextual), IT People Innovation, **Follow Inspiration** (Robôs e sistemas de navegação espacial para retalho e cuidados de saúde), **CeiiA**: Desenvolvimento de soluções urbanas inteligentes com integração espacial.

3.2.6. Estatísticas recentes

O mercado global de computação espacial crescerá de \\$110 mil milhões em 2023 para \\$1,7 biliões até 2033 2

Até 2028, **20% das pessoas terão experiências imersivas com conteúdo contextual semanalmente**, contra menos de 1% em 2023 8

60% das empresas europeias planeiam investir em tecnologias imersivas até 2026 (IDC Europe, 2024)

3.2.7. Referências

Gartner. (2023). "Análise de Tecnologias Emergentes: Computação Espacial".

IDC. (2023). "Previsão de mercado: tendências de adoção de RA e RV."

Deloitte. (2023). "Transformação Digital na Manufatura".

Statista. (2023). "Insights de Mercado de Realidade Aumentada e Realidade Virtual".

Customer First

4.1. | Neurological enhancements

Melhorias neurológicas: tecnologias para melhorar as funções cognitivas e a compreensão do pensamento do consumidor.

Os aprimoramentos neurológicos através de tecnologias como realidade aumentada (RA), realidade virtual (RV) e interfaces cérebro-máquina estão a transformar a forma como os seres humanos interagem com o mundo digital. Estas tecnologias não só aumentam as capacidades cognitivas e sensoriais dos utilizadores, como também permitem compreender emoções, intenções e padrões de comportamento dos consumidores e colaboradores 10 11.

4.1.1. Impacto nos negócios

Setor	Impacto esperado
Administração pública	Formação imersiva dos colaboradores, simulações urbanas aumento da participação dos cidadãos.
Energia & Utilities	Treinamento técnico em ambientes virtuais, simulação de falhas, aumento da segurança operacional.
Financeiro & Seguros	Análise emocional de clientes, simulações de risco e formação comportamental
Indústria e Retalho	Análise do comportamento do consumidor, experiências de compra imersivas, team building.
Telecomu- nicações e Media	Suporte técnico com RA, visualização de rede, experiências interativas do cliente.
Saúde	Treino cirúrgico em RV, reabilitação cognitiva, diagnóstico assistido por RA e interfaces cérebro-máquina.

4.1.2. Abordagem técnica

Tecnologias-chave

- Realidade Aumentada (RA): Sobreposição de dados digitais no ambiente físico.
- Realidade Virtual (VR): Ambientes digitais imersivos para simulação e treinamento.
- Interfaces cérebro-máquina (BBMI): Comunicação bidirecional entre cérebro e máquina.
- Sensores biométricos e EEG: Monitorização de estados mentais e emocionais.
- Plataformas de lA cognitiva: Análise de padrões de atenção, stress e desempenho.

Infraestruturas

- Dispositivos como HoloLens, Meta Quest, sensores de EEG.
- Integração com plataformas LMS, ERP e simulação.
- Edge computing e 5G para baixa latência e resposta em tempo real.

4.1.3. Casos de uso por mercado

Setor	Empresa/Instituição	Aplicação de Melhorias Neurológicas
Administração pública	Concelho de Cascais	Formação de técnicos municipais com simulações VR
Energia	EDP Inovação	Treinamento de operadores em ambientes virtuais com feedback cognitivo
Financeiro	Banco Santander Portugal	Avaliação emocional de clientes em interações digitais
Indústria e Retalho	Sonae MC	Análise de emoções e decisões de compra com RA e sensores biométricos
Telecomunicações	Laboratórios Altice	Suporte técnico com RA e monitoramento de estresse em técnicos de campo
Saúde	Hospital da Luz	Treino cirúrgico em RV e reabilitação cognitiva com interfaces cérebro-máquina

4.1.4. Considerações de mercado

Administração Pública: Inclusão digital e acessibilidade

Energia: Segurança operacional e validação técnica

Financeiro: Ética na análise emocional e privacidade

Indústria: Integração com sistemas de produção e ergonomia
Telecomunicações: Latência e personalização em tempo real

Saúde: Certificação médica e validação científica

4.1.5. Empresas de referência e startups

Globais

Portuguesas:

Didimo (avatares digitais), IT People Innovation (RA/RV), NeuroPsyAI (neurociência aplicada), IPN (projetos de saúde com RV) ¹², **Virtuleap** (Portugal): Plataforma de formação cognitiva em RV para a saúde e educação, **Siga a inspiração:** Robótica e navegação cognitiva para ambientes hospitalares e de retalho.

4.1.6. Estatísticas recentes

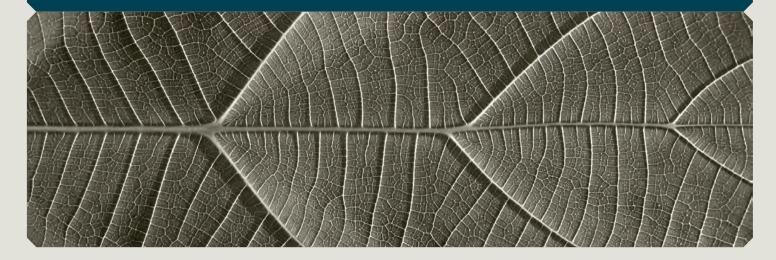
Até 2034, **30% dos trabalhadores do conhecimento utilizarão tecnologias de aprimoramento neurológico** para manter a competitividade ¹⁰

O mercado global de neurotecnologia deverá ultrapassar \\$40 mil milhões até 2030

Em Portugal, projetos como o **VR Health Champions** já investem mais de **7 milhões de euros** em aplicações de RA/RV na saúde ¹²

4.1.7. Referências

Gartner. (2023). "Análise de Tecnologias Emergentes: Aprimoramentos Cognitivos e Neurológicos".


Deloitte. (2023). "Tendências na Adoção de Neurotecnologia".

Fortune Business Insights. (2023). "Visão Geral do Mercado de Aprimoramentos Neurológicos".

Statista. (2023). "Insights de Mercado de Tecnologia Cognitiva".

Digital Identity Onboarding/ Signature

5.1. | Digital trust and cybersecurity

Confiança digital e cibersegurança Integração de tecnologias Web3 e arquiteturas de confiança para melhorar a segurança digital e reduzir os riscos de ciberataques.

A crescente complexidade do ecossistema digital, impulsionada por tecnologias como IA generativa, 5G, IoT e cloud, tem ampliado a superfície de ataque e exposto vulnerabilidades críticas. Em resposta, empresas e entidades públicas em Portugal estão a adotar arquiteturas de confiança zero (Zero Trust) e tecnologias Web3 — como blockohain, identidade descentralizada (DID) e contratos inteligentes — para reforçar a confiança digital e a resiliência cibernética 15 14.

5.1.1. Impacto nos negócios

Setor	Impacto esperado
Administração pública	Identidade digital soberana, autenticação descentralizada, transparência nos contratos públicos.
Energia & Utilities	Registo imutável de dados operacionais, contratos inteligentes para gestão descentralizada de energia.
Financeiro & Seguros	Identidade digital, prevenção de fraudes e contratos inteligentes
Indústria e Retalho	Rastreabilidade de produtos, pro- teção de dados do consumidor, pagamentos seguros com tokens digitais.
Telecomu- nicações e Media	Gestão de identidade digital, pro- teção de redes distribuídas, renta- bilização segura de conteúdos.
Saúde	Consentimento digital seguro, interoperabilidade de dados clíni- cos, proteção de dados sensíveis.

5.1.2. Abordagem técnica

Web3 e Blockchain:

- Contratos inteligentes para automação de processos.
- Identidade descentralizada (DID) para autenticação segura.
- Livro-razão distribuído para rastreabilidade e integridade dos dados.

Arquiteturas de confiança:

- Arquitetura Zero Trust (ZTA) com verificação contínua.
- Computação confidencial para proteção de dados em uso.
- Integração com SIEM, IAM e plataformas de cibersegurança.

Infraestruturas:

- Redes 5G e edge computing para segurança em tempo real.
- Plataformas interoperáveis com APIs seguras.
- Certificação de conformidade com RGPD e NIS2.

5.1.3. Casos de uso por mercado

Setor	Empresa/Instituição	Aplicação Web3 e Confiança Digital
Administração pública	AMA / Autenticação.gov	ldentidade digital descentralizada e autenticação segura
Energia	E-Redes (EDP)	Blockchain para rastreabilidade de consumo e contratos inteligentes de energia
Financeiro	Banco de Portugal	Estudo de viabilidade de identidade digital soberana e contratos inteligentes
Indústria e Retalho	Sonae	Rastreabilidade de produtos e proteção de dados do consumidor com blockchain
Telecomunicações	EUA	Gerenciamento de identidade digital e segurança de rede com arquitetura Zero Trust
Saúde	SPMS/SNS24	Consentimento digital e interoperabilidade segura dos dados clínicos

5.1.4. Considerações de mercado

Administração Pública: Requer interoperabilidade entre sistemas e conformidade com RGPD

Energia: Alta criticidade exige certificações e testes rigorosos **Financeiro:** Regulação do Banco de Portugal e da CMVM

Indústria: Integração com ERPs e sistemas de logística

Telecomunicações: Escalabilidade e latência são desafios técnicos **Saúde:** Ética, consentimento informado e interoperabilidade clínica

5.1.5. Empresas de referência e startups

Globais

Portuguesas:

Utrust (pagamentos Web3), OriginalMy (identidade digital), BlockBee (infraestrutura blockchain), Autentika (verificação de identidade), **Sphereon** (com presença em Portugal): Soluções descentralizadas de identidade e verificação digital.

5.1.6. Estatísticas recentes

Apenas **2% das organizações globais** implementaram ações de resiliência cibernética em todas as áreas críticas ¹⁴ **66% dos executivos** consideram o cibercrime a principal ameaça ao seu negócio ¹⁵

A adoção de identidade digital descentralizada deverá crescer 300% até 2027 na Europa, sequndo a IDC

5.1.7. Referências

Gartner, "Trends in Digital Trust and Web3", 2024.

McKinsey & Company, "Blockchain e Inovações em Cibersegurança", 2023.

Forrester, "Reforçar a segurança através da descentralização", 2024.

IBM Research, "Integrando Blockchain em Arquiteturas de Segurança", 2023.

5.2. Desinformation security

Segurança contra a desinformação: tecnologias baseadas em IA para mitigar os riscos de desinformação.

A desinformação digital tornou-se uma das ameaças mais críticas à confiança institucional, à reputação empresarial e à integridade dos dados. Em Portugal, o aumento da manipulação de conteúdos, perfis falsos e campanhas de influência digital exige uma resposta tecnológica robusta. A integração de Web3 (blockchain, identidade descentralizada, contratos inteligentes) com arquiteturas de confiança (Zero Trust, verificação descentralizada) está a emergir como uma abordagem estratégica para mitigar riscos de desinformação e reforçar a segurança digital 16 17.

5.2.1. Impacto nos negócios

Setor	Impacto esperado
00101	iiipaoto capcidao
Administração pública	Verificação da autenticidade das comunicações oficiais, combate às campanhas de desinformação política.
Energia & Utilities	Proteção contra campanhas de desinformação sobre falhas de energia ou preços, rastreabilidade de dados.
Financeiro & Seguros	Identidade digital segura e con- tratos inteligentes contra Golpes com deepfakes, manipulação de mercado
Indústria e Retalho	Defesa contra ataques à reputação da marca, verificação da origem do produto e campanhas falsas.
Telecomuni- cações e Media	Monitoramento de mídias sociais, deteção de deepfakes, proteção de conteúdo e identidade digital.
Saúde	Combater a desinformação sobre vacinas e tratamentos, validando fontes clínicas e científicas.
Saúde	vacinas e tratamentos, validando

5.2.2. Abordagem técnica

Web3 e Blockchain:

- Registo imutável de conteúdos e fontes.
- Identidade descentralizada (DID) para validação de autor e entidade.
- Contratos inteligentes para gestão de consentimento e rastreabilidade.

Arquiteturas de confiança:

- Zero Trust: Verificação contínua de identidade e contexto.
- Verificação de conteúdo com IA e machine learning.
- Inteligência Narrativa: detetar padrões de desinformação nas redes sociais.

Ferramentas complementares:

- Plataformas automatizadas de verificação de factos.
- Sistemas de reputação digital.
- Integração com SIEM e plataformas de inteligência de ameaças.

5.2.3. Casos de uso por mercado

Setor	Empresa/Instituição	Aplicação da Segurança da Desinformação
Administração pública	Presidência do Conselho de Ministros	Plataforma para verificar a autenticidade das comunicações oficiais
Energia	Galp Energia	Blockchain para rastreabilidade de dados operacionais e mitigação de notícias falsas
Financeiro	Banco de Portugal	ldentidade digital descentralizada para onboarding e prevenção de fraudes
Indústria e Retalho	Sonae	Monitoramento de mídia social e deteção de campanhas falsas contra marcas
Telecomunicações	Altice Portugal	Deteção de deepfake e proteção de identidade digital de clientes
Saúde	Direção-Geral da Saúde (DGS)	Validação de fontes clínicas e combate à desinformação em saúde pública
		· · · · · · · · · · · · · · · · · · ·

5.2.4. Considerações de mercado

Administração Pública: Requer regulamentação e interoperabilidade entre sistemas

Energia: Alta criticidade exige certificações e testes rigorosos **Financeiro:** Conformidade com o Banco de Portugal e RGPD **Indústria:** Integração com ERPs e sistemas de rastreabilidade

Telecomunicações: Escalabilidade e latência são desafios técnicos

Saúde: Ética, consentimento informado e validação científica

5.2.5. Empresas de referência e startups

Globais

Portuguesas:

Original My (identidade digital), Block Bee (infraestrutura Web3), Autentika (verificação de identidade), YData (dados éticos para IA), Adyta (Portugal): Segurança das comunicações e identidade digital

5.2.6. Estatísticas recentes

Até 2028, 50% das empresas adotarão soluções específicas para combater a desinformação, contra menos de 5% em 2024 ¹⁷

68% dos portugueses afirmam já ter sido expostos a fake news com impacto em decisões pessoais ou profissionais 74% das empresas consideram a desinformação uma ameaça crítica à reputação e à confiança digital 16


5.2.7. Referências

Gartner, "Combatendo a desinformação com IA", 2024.

McKinsey & Company, "Securing Trust in the Digital Age" (Garantir a confiança na era digital), 2023.

Forrester, "Blockchain e IA para a Confiança", 2023.

IBM Watson, "Al for Information Integrity", 2023.

5.3. Post-quantum cryptography

Criptografia pós-quântica: métodos criptográficos resistentes a ameaças de computação quântica.

A computação quântica promete revolucionar áreas como farmacologia, finanças e inteligência artificial. No entanto, representa também uma ameaça crítica à sequrança digital. Algoritmos criptográficos amplamente utilizados hoje — como RSA e ECC — poderão ser quebrados por computadores quânticos em minutos 18 19. A criptografia pós-quântica (PQC) surge como resposta, com algoritmos resistentes a ataques quânticos, sendo já recomendada por entidades como o NIST e o Departamento de Segurança Interna dos EUA (DHS) 19.

5.3.1. Impacto nos negócios

Impacto esperado
Proteção das comunicações governamentais, autenticação segura dos cidadãos, integridade dos dados públicos.
Segurança de rede SCADA, proteção de dados operacionais e contratos inteligentes com algo- ritmos PQC.
Segurança de transações e con- tratos digitais contra Quebra de criptografia bancária
Proteção dos dados dos clientes e da cadeia de abastecimento, se- gurança nos pagamentos digitais.
Proteção de redes 5G, autenticação de dispositivos IoT, segurança de dados em edge computing.
Proteção de dados clínicos, con- sentimento digital seguro, intero- perabilidade criptografada entre sistemas.

5.3.2. Abordagem técnica

Algoritmos pós-quânticos:

- Baseado em problemas matemáticos como reticulados, códigos de correção de erros e isogenia.
- Exemplos: Kyber, Dilithium, Falcon (selecionado pelo NIST).

Transição de criptografia:

- Inventário de criptoativos.
- Avaliação de impacto e desempenho dos novos algoritmos.
- Implantação híbrida (clássico + PQC) durante o período de transição.

Infraestruturas:

- Atualização de bibliotecas criptográficas (por exemplo, OpenSSL, Bouncy Castle).
- Integração com HSMs e PKIs compatíveis com PQC.
- Monitoramento contínuo de vulnerabilidades e conformidade com NIS2 e GDPR.

5.3.3. Casos de uso por mercado

Setor	Empresa/Instituição	Aplicação da Criptografia Pós-Quântica
Administração pública	AMA / Autenticação.gov	Transição para algoritmos PQC em autenticação digital e assinatura eletrônica
Energia	EDP Inovação	Testando algoritmos PQC em redes SCADA e contratos inteligentes
Financeiro	Banco de Portugal	Estratégia de transição para criptografia pósquântica
Indústria e Retalho	Sonae	Protegendo dados de clientes e transações com criptografia híbrida PQC
Telecomunicações	Altice Portugal	Atualizando a infraestrutura de rede com algoritmos resistentes a ataques quânticos
Saúde	SPMS/SNS24	Proteção de Dados Clínicos e Consentimento Digital com PQC

5.3.4. Considerações de mercado

Administração Pública: Alinhamento com políticas nacionais de cibersegurança

Energia: Alta disponibilidade e integração com sistemas SCADA **Financeiro:** Conformidade com o Banco de Portugal e RGPD

Indústria: Integração com sistemas legados e ERPs

Telecomunicações: Desempenho e latência são desafios técnicos **Saúde:** Garantia de interoperabilidade e consentimento digital

5.3.5. Empresas de referência e startups

Globais

Portuguesas:

Kryptus (HSMs e segurança nacional), INESC TEC (investigação em criptografia), INL (nanotecnologia aplicada à segurança)

5.3.6. Estatísticas recentes

Até 2029, a criptografia assimétrica atual será considerada insegura 18

A transição para PQC exigirá mais esforço do que o Y2K 18

A maioria das organizações ainda não iniciou o planeamento para PQC 18

5.3.7. Referências

Gartner, "O futuro da criptografia pós-quântica", 2024.

McKinsey & Company, "Quantum Security Trends", 2023.

Forrester, "Construindo resiliência com PQC", 2023.

IBM Research, "Soluções criptográficas quantum-seguras", 2023.

ESG 360

6.1. | Sustainable IT technology

Tecnologia sustentável: alavancando a tecnologia para alcançar metas ambientais, sociais e de governança (ESG).

A sustentabilidade deixou de ser apenas uma responsabilidade corporativa para se tornar uma alavanca estratégica de inovação e competitividade. A tecnologia sustentável

— que inclui desde infraestruturas verdes até software de gestão ESG — está a transformar a forma como as organizações operam, medem impacto e criam valor. Em Portugal, empresas de todos os setores estão a integrar práticas sustentáveis nas suas estratégias de TI, com o apoio de consultoras como EY, INTELLIAS, LUZA GROUP, McKinsey, BCG, IDC e Globant 21 22.

6.1.1. Impacto nos negócios

Setor	Impacto esperado
Administração pública	Digitalização verde dos serviços, redução de papel, eficiência energética nas infraestruturas públicas.
Energia & Utilities	Monitorização inteligente de consumos, redes elétricas sustentáveis, otimização dos recursos naturais.
Financeiro & Seguros	Relatórios ESG automatizados, análise de risco climático e investi- mentos verdes
Indústria e Retalho	Cadeias de abastecimento susten- táveis, rastreabilidade do carbono, embalagens inteligentes.
Telecomuni- cações e Media	Data centers com baixo consumo de energia, redes 5G eficientes, inclusão digital.
Saúde	Infraestruturas hospitalares verdes, telemedicina para reduzir as viagens, gestão sustentável de resíduos.
Utilities Financeiro & Seguros Indústria e Retalho Telecomunicações e Media	táveis, otimização dos recursos naturais. Relatórios ESG automatizados, análise de risco climático e inves mentos verdes Cadeias de abastecimento suste táveis, rastreabilidade do carbon embalagens inteligentes. Data centers com baixo consumo de energia, redes 5G eficientes, inclusão digital. Infraestruturas hospitalares verdes, telemedicina para reduzir as viagens, gestão sustentável de

6.1.2. Abordagem técnica

Tecnologias-chave:

- Nuvem verde: uso de data centers com energia renovável.
- loT e sensores ambientais: monitorização de consumos e emissões.
- Blockchain para rastreabilidade ESG: transparência nas cadeias de valor.
- IA para a Sustentabilidade: otimização de processos com menor impacto ambiental.
- Digital Twins: simulação do impacto ambiental das operações.

Infraestruturas:

- · Plataformas de análise ESG integradas com ERP.
- Certificações digitais (e.g. ISO 14001, LEED).
- Integração com relatórios e frameworks de sustentabilidade como GRI e SASB.

6.1.3. Casos de uso por mercado

Setor	Empresa/Instituição	Aplicação de Tecnologia Sustentável
Administração pública	Câmara Municipal de Lisboa	Plataforma digital para gestão energética de edifícios públicos
Energia	EDP	Plataforma de gestão de carbono e otimização de rede com IA
Financeiro	Banco de Portugal	Implementação de sistema de reporte ESG automatizado
Indústria e Retalho	Sonae	Rastreabilidade de emissões da cadeia de suprimentos com blockchain
Telecomunicações	EUA	Data centers energeticamente eficientes e monitoramento de consumo
Saúde	Hospital da Luz	Gestão de resíduos hospitalares com IoT e painéis de sustentabilidade

6.1.4. Considerações de mercado

Administração Pública: Necessidade de políticas públicas e interoperabilidade

Energia: Integração com sistemas SCADA e regulação ambiental

Financeiro: Conformidade com SFDR e Taxonomia Europeia

Indústria: Integração com ERPs e fornecedores globais

Telecomunicações: Eficiência energética e gestão de equipamentos **Saúde:** Certificação ambiental e conformidade com normas clínicas

6.1.5. Empresas de referência e startups

Globais

Portuguesas:

Sensei (retalho inteligente), YData (dados éticos), Circularise (blockchain para economia circular), Watt-IS (eficiência energética), **Heaboo** (Portugal): Tecnologia de poupança de água com sensores inteligentes.

6.1.6. Estatísticas recentes

70% das empresas europeias planeiam aumentar o investimento em tecnologia ESG até 2026 ²² 60% dos líderes de TI em Portugal consideram a sustentabilidade uma prioridade estratégica ²¹ O mercado global de software ESG deverá ultrapassar **\\$10 mil milhões até 2027** ²²

6.1.7. Referências

Gartner, "Tendências em Tecnologia Sustentável", 2024.

McKinsey & Company, "ESG e Transformação Digital", 2023.

Forrester, "Tecnologia para um futuro mais verde", 2024.

Relatório de Sustentabilidade da Microsoft, 2023.

ITO Transformation

7.1. | Private cloud

Nuvem privada: crescimento do investimento impulsionado por mudanças nos preços da nuvem pública e domínio dos principais fornecedores.

O crescimento exponencial da computação em nuvem nos últimos anos levou muitas organizações a adotarem **infraestruturas públicas** como padrão. No entanto, com o aumento dos custos, a complexidade dos modelos de precificação e a concentração de mercado em poucos fornecedores (como AWS, Azure e Google Cloud), cresce o interesse por **alternativas de nuvem privada**. Em Portugal, empresas de setores críticos estão a investir em **modelos híbridos e privados**, ²⁴ ²⁵.

7.1.1. Impacto nos negócios

Setor	Impacto esperado
Administração pública	Soberania digital, conformidade com o RGPD, controlo sobre dados críticos e serviços essenciais.
Energia & Utilities	Continuidade operacional, segurança de dados SCADA, integração com edge computing.
Financeiro & Seguros	Isolamento de dados e controlo de auditoria para desafio Regulação do Banco de Portugal e riscos de terceiros
Indústria e Retalho	Redução de latência, proteção de propriedade intelectual, gestão de dados sensíveis de clientes.
Telecomu- nicações e Media	Gestão de redes 5G, armazena- mento de dados multimédia, supor- te para serviços de baixa latência.
Saúde	Proteção dos dados clínicos, intero- perabilidade entre sistemas hospi- talares, cumprimento das normas europeias.

7.1.2. Abordagem técnica

Modelos de nuvem privada:

- Hosted Private Cloud: infraestrutura dedicada em centros de dados externos (e.q. OVHcloud, IBM Cloud).
- On-Premises Private Cloud: infraestrutura gerenciada internamente com soluções como VMware, OpenStack.
- Private Cloud as a Service (PCaaS): Modelo gerenciado por terceiros com SLAs personalizados.

Tecnologias-chave:

- Virtualização (KVM, Hyper-V), containers (Kubernetes), SDN (Software Defined Networking).
- Integração com SIEM, IAM, backup e recuperação de desastres.
- Monitorização e orquestração de consumos com ferramentas como Ansible, Terraform.

Segurança e conformidade:

- Certificações ISO 27001, SecNumCloud.
- Encriptação de dados em repouso e em trânsito.
- Segmentação de rede e políticas de Zero Trust.

7.1.3. Casos de uso por mercado

Setor	Empresa/Instituição	Aplicação na nuvem privada
Administração pública	AMA / Autenticação.gov	Plataforma de identidade digital de nuvem privada soberana
Energia	EDP Inovação	Gerenciamento de dados SCADA e análise preditiva em um ambiente privado
Financeiro	Banco de Portugal	Plataforma de dados sensíveis em nuvem privada com compliance regulatório
Indústria e Retalho	Sonae	Plataforma de E-commerce e CRM em nuvem privada híbrida
Telecomunicações	EUA	Armazenamento multimédia e gestão de redes 5G com cloud privada distribuída
Saúde	Hospital da Luz	Gestão de dados clínicos e interoperabilidade com sistemas públicos em nuvem privada

7.1.4. Considerações de mercado

Administração Pública: Requer infraestrutura nacional e fornecedores certificados

Energia: Alta disponibilidade e integração com sistemas SCADA Financeiro: Auditoria, criptografia e segregação de ambientes Indústria: Compatibilidade com sistemas legados e automação

Telecomunicações: Baixa latência e escalabilidade local **Saúde:** Conformidade com RGPD e normas da DGS

7.1.5. Empresas de referência e startups

Globais

Portuguesas:

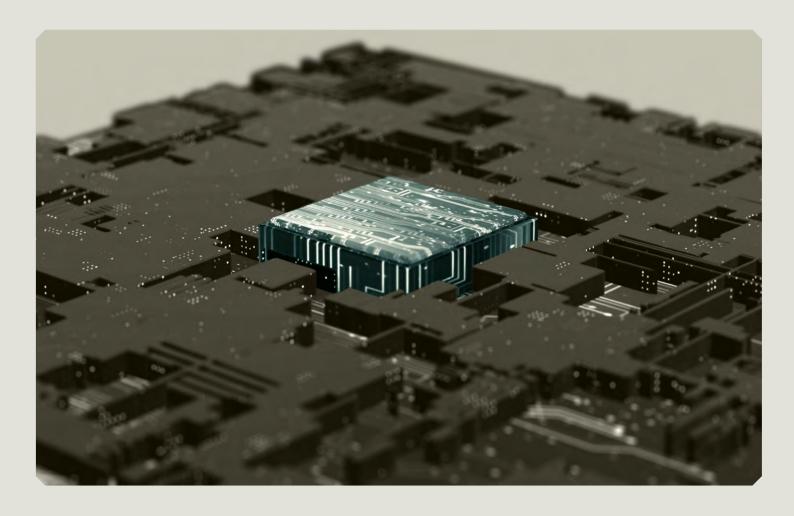
NOS Data Centers, Claranet Portugal, Warpcom, IP Telecom, Sword Health (Portugal): Plataforma digital de saúde com infraestrutura privada para proteção de dados clínicos.

7.1.6. Estatísticas recentes

O investimento global em nuvem pública ultrapassará os **\\$723 mil milhões em 2025**, mas com **crescimento mais lento** devido à pressão de custos ²⁵

42% das empresas portuguesas planeiam migrar cargas críticas para nuvem privada até 2026 (IDC Portugal)

A McKinsey destaca que os **modelos híbridos e privados** estão a ganhar tração como resposta à volatilidade dos preços e à necessidade de controlo operacional 26


7.1.7. Referências

Gartner, "Principais tendências em computação em nuvem", 2024.

McKinsey & Company, "Soluções de nuvem híbrida e privada", 2023.

Forrester, "Navegando no cenário da nuvem privada", 2024.

Red Hat Research, "Soluções de código aberto para nuvens privadas", 2023.

7.2. | Hybrid computing

Integração de Diferentes Modelos Computacionais para Eficiência na Resolução de Problemas Complexos.

A computação híbrida representa a orquestração de diferentes modelos de computação — incluindo cloud pública, cloud privada, edge computing, HPC (computação de alto desempenho) e, futuramente, computação quântica — para resolver problemas complexos de forma eficiente, segura e escalável. Segundo a Gartner, trata-se de uma das 10 principais tendências tecnológicas estratégicas para 2025, com impacto transversal em todos os setores 27 28.

7.2.1. Impacto nos negócios

Setor	Impacto esperado
Administração pública	Modernização de serviços digitais, interoperabilidade entre sistemas legados e em nuvem, soberania de dados.
Energia & Utilities	Processamento em tempo real com edge computing, otimização de rede e manutenção preditiva.
Financeiro & Seguros	Análise de risco, deteção de frau- des e modelação financeira com IA e HPC
Indústria e Retalho	Integração de dados de produção e consumo, automação inteligen- te, análise preditiva em tempo real.
Telecomu- nicações e Media	Suporte para redes 5G, entrega de conteúdo de baixa latência, gerenciamento de dados distribuídos.
Saúde	Processamento seguro de dados clínicos, suporte de telemedicina, interoperabilidade entre sistemas hospitalares.

7.2.2. Abordagem técnica

Componentes da Computação Híbrida:

- Nuvem pública (AWS, Azure, GCP) para escalabilidade e elasticidade.
- Nuvem privada para segurança e conformidade.
- Computação de borda para baixa latência e processamento local.
- Orquestração multicloud com ferramentas como Kubernetes, OpenShift, Terraform.

Benefícios técnicos:

- Redução de custos operacionais com alocação dinâmica de recursos.
- Continuidade de negócios com failover entre ambientes.
- Flexibilidade para cargas de trabalho sensíveis e não confidenciais.

Segurança e Governança:

- Políticas de confiança zero.
- · Monitoramento unificado com SIEM.
- Conformidade com LGPD e normas setoriais (ex: ANS, ANEEL).

7.2.3. Casos de uso por mercado

Empresa	Aplicação da Computação Híbrida
Serpro	Integração de serviços digitais com nuvem privada e edge para segurança nacional
Neoenergia	Monitoramento de grade com borda + nuvem híbrida para análise preditiva
Banco de Portugal	Análise de risco em tempo real com cloud híbrida e IA
Revista Luiza	Plataforma de e-commerce e logística com arquitetura híbrida
Vivo (Telefônica Brasil)	Orquestração de redes 5G com edge computing e nuvem privada
Hospital Israelita Albert Einstein	Processamento de exames e dados clínicos com nuvem híbrida e edge computing
	Serpro Neoenergia Banco de Portugal Revista Luiza Vivo (Telefônica Brasil)

7.2.4. Considerações de mercado

Administração Pública: Conformidade com RGPD e soberania de dados

Energia: Integração com sistemas SCADA e resiliência operacional

Financeiro: Segurança, auditoria e conformidade regulatória **Indústria:** Compatibilidade com sistemas legados e automação

Telecomunicações: Latência mínima e escalabilidade **Saúde:** Ética, interoperabilidade e certificação clínica

7.2.5. Empresas de referência e startups

Globais

Portuguesas:

Claranet Portugal, Warpcom, IP Telecom, INESC TEC (investigação em HPC), **Zup Innovation**: Plataforma para integração e orquestração de ambientes híbridos.

7.2.6. Estatísticas recentes

68% das empresas portuguesas planeiam adotar arquiteturas híbridas até 2026 (IDC Portugal)

45% das cargas de trabalho críticas já operam em ambientes híbridos em Portugal 28

A Gartner prevê que a computação híbrida será essencial para suportar **IA, computação espacial e robótica polifuncional** até 2027 27

7.2.7. Referências

Gartner, "A Ascensão da Computação Híbrida", 2024.

Forrester, "Edge and Cloud: Um Futuro Híbrido", 2023.

 ${\sf McKinsey} \ \& \ Company, \ ``Strategies for \ Hybrid \ IT \ Adoption", 2023.$

IBM Research, "Nuvem híbrida e sinergias quânticas", 2023.

Digital Workplace

8.1. | Augmented connected workforce

Força de trabalho aumentada e conectada: adotando ferramentas digitais para modelos de trabalho remotos e híbridos e aumentando a produtividade.

A força de trabalho aumentadaconectada (Augmented Connected
Workforce – ACWF) é uma abordagem
estratégica que combina tecnologias
inteligentes, plataformas colaborativas,
análise de dados e automação para
melhorar a experiência, o desempenho
e a produtividade dos colaboradores.
Segundo a Gartner, até 2027, 50% das
grandes organizações industriais criarão
novas funções com base em modelos de
trabalho aumentados e conectados 30.

Em Portugal, a transformação digital da força de trabalho é uma prioridade transversal, refletida em políticas públicas como a Estratégia para a Transformação Digital da Administração Pública 2021-2026.

8.1.1. Impacto nos negócios

Setor	Impacto esperado	
Administração pública	Digitalização dos serviços, formação remota dos colaboradores, maior eficiência e transparência.	
Energia & Utilities	Operações remotas, manutenção preditiva, colaboração entre equipas distribuídas.	
Financeiro & Seguros	Atendimento digital personalizado, automação de processos e análise de desempenho	
Indústria e Retalho	Automação de processos, gestão de equipas híbridas, integração de dados em tempo real.	
Telecomu- nicações e Media	Suporte técnico remoto, gestão de redes distribuídas, formação contínua.	
Saúde	Telemedicina, colaboração clínica remota, gestão de equipas multidisciplinares.	

8.1.2. Abordagem técnica

Tecnologias-chave:

- Plataformas de colaboração (Microsoft Teams, Google Workspace, Slack).
- Ferramentas de produtividade alimentadas por IA (Copilot, Notion AI, Miro).
- Soluções de gestão de RH e performance (SAP SuccessFactors, Workday).
- Realidade aumentada para suporte técnico remoto.
- Infraestrutura segura com Zero Trust, VPNs e autenticação multifator.

Infraestruturas:

- Nuvem híbrida para escalabilidade e segurança.
- Integração com ERP e CRM.
- Monitorização digital da produtividade e bem-estar.

8.1.3. Casos de uso por mercado

Setor	Empresa/Instituição	Aplicação da Augmented-Connected Workforce
Administração pública	AMA / Autenticação.gov	Formação digital de colaboradores e gestão remota de serviços públicos
Energia	EDP	Operações e manutenção remotas com RA e painéis colaborativos
Financeiro	Banco de Portugal	Automação de processos internos e análise de desempenho com IA
Indústria e Retalho	Sonae	Gestão de equipas híbridas e integração de dados de loja e logística
Telecomunicações	EUA	Suporte técnico remoto com RA e formação técnica contínua
Saúde	Hospital da Luz	Telemedicina e colaboração clínica com plataformas seguras e interoperáveis
	·	

8.1.4. Considerações de mercado

Administração Pública: Inclusão digital e interoperabilidade entre sistemas

Energia: Conectividade em campo e segurança operacional Financeiro: Conformidade com RGPD e segurança de dados Indústria: Integração com sistemas de chão de fábrica e ERPs

Telecomunicações: Latência mínima e escalabilidade **Saúde:** Ética, certificação clínica e interoperabilidade

8.1.5. Empresas de referência e startups

Globais

Portuguesas:

Talkdesk (contact centers), Sensei (retalho inteligente), Didimo (avatares digitais), Sword Health (fisioterapia digital)

8.1.6. Estatísticas recentes

74% dos líderes portugueses consideram o trabalho híbrido como modelo permanente (EY Work Reimagined Survey 2024)

60% das empresas industriais planeiam adotar plataformas de força de trabalho conectada até 2027 (IDC Europe)

A Gartner prevê que **a produtividade aumentará até 30%** com a adoção de estratégias ACWF bem implementadas $\frac{30}{2}$

8.1.7. Referências

Gartner, "Tendências na força de trabalho aumentada", 2024.

McKinsey & Company, "Transformação Digital no Local de Trabalho", 2023.

Forrester, "Ferramentas da força de trabalho e insights de produtividade", 2024.

Pesquisa da Microsoft, "The Role of Collaboration Platforms in Hybrid Work" (O papel das plataformas de colaboração no trabalho híbrido), 2023.

Tech for the future

Tecnologia que nos prepara para o futuro

